Опоры мостов

Опоры, как основная часть мостов, по расходам труда, материалов и стоимости составляют 60 — 70% от общих затрат на все сооружение. На них воздействует нагрузка от пролетных строений которая передает ее на фундаменты . Опоры передают на грунт сотни, а в случае больших пролетов мостов тысячи тонн.

Опоры мостов - stroyone

Содержание

Опора должна иметь достаточную прочность и устойчивость, а величины ее осадок, крена и оползней не должен превышать допустимых пределов. Устойчивость опор зависит от надежности основания под ними и сохранения ее от размывов.
Проектирование и строительство опор и фундаментов — одна из самых сложных и трудоемких отраслей мостостроения, которая определяет общие сроки и стоимость строительства. Поэтому в современном мостостроения широко применяют с6оpные и сборно-монолитные конструкции опор.

Опоры мостов разделяют (в зависимости от их расположения на промежуточные опоры (быки) и береговые опоры (устои).

  • Промежуточные опоры воспринимают нагрузки от смежных пролетов и собственного веса, передавая их основанию.
  • Устои — нагрузки не только от пролетов, но и давление насыпи подходов, а также обеспечивают сочетание дороги с мостом.

Для экономии цемента и снижение стоимости бетона в него при возведении опор нередко добавляют бутовый камень (до 20% общего объема). Такую кладку называют бутобетонный.
Опоры сооружают из тяжелого бетона (на щебне из горных пород).

Для надводной (надземной) части опор можно использовать легкий бетон, отвечающей требованиям технических условий. Для массивных частей опор используют бетоны класса В15 — В60.
Железобетонные конструкции опор изготовляют из тех же материалов, что и железобетонные пролетные строения. Если бетонные массивные опоры находятся в зоне смешанного уровня воды, то к ним проявляют повышенные требования. К опорам ставят жесткие требования по долговечности.




Если пролетные строения, значительно изнашиваются, относительно легко можно усилить или заменить новыми, то перестройка опор связана со значительными трудностями и требует большого расхода средств. Их сооружение часто длительный. Поэтому конструкция опор должна быть экономной и технологически удобной.

Опоры железобетонных и металлических мостов выполняют преимущественно из бутобетонной или бетонной (армированной или неармированной) кладки. Конструкция опор может быть массивной и облегченной с отдельными стойками, рамной надстройкой и т.д. Для железнодорожных мостов чаще всего применяют массивы опоры.



В автодорожных мостах распространены опоры облегченного типа. Размеры массивных частей опор преимущественно назначают по конструктивным соображениям и прочность иx кладки полностью не используются. Однако для опор класс бетона берут не менее В20, учитывая условия их работы и требования долговечности.

Элементы сборных конструкций изготавливают из бетона класса не менее ВЗО. 3 того же класса необходимо выполнять опоры на реках с сильным ледоходом. В опорах, облицованных естественным камнем, класс бетона можно снизить до В15.
Для заполнения внутренних полостей сборно-монолитных опор с целью уменьшения экзотермии бетонной смеси, не учитываются в расчетах, класс следует принимать не более В15. Кроме прочности бетон должен быть достаточно морозостойким. Класс морозостойкости не менее В10, а при средней температуре самого холодного месяца ниже -10 ° С — не менее В20.

В современных условиях опоры редко облицовывают камнем, поскольку это значительно повышает их стоимость. На реках при толщине льда более 0,5 м, облицовка опор в пределах ледохода обязательна.

В этих случаях их облицовывают природным камнем прочности не ниже 600 кг / см2 или искусственным камнем из бетона класса не менее В40. Конструкция интенсивно работают на изгиб или воспринимают местные сосредоточены усилия, выполняют из железобетона класса не ниже В20 с обычной или предварительно напряженной арматурой.

В зависимости от системы моста, рода подвижных нагрузок, а также назначения, в современном мостостроительстве применяют разные конструкции опор мостов. Некоторые из них появились давно, еще до использования в мостах железобетона. Многие конструкции, разработанных совсем недавно, имеют большие технические преимущества.

Сначала появились массивные опоры, выполнявшие из каменной кладки, а затем — из бетона и бутобетона. Во время работы на внецентренное сжатие в их сечениях нельзя допускать растяжных напряжений. Благодаря большим размерам и весе такие опоры хорошо противостоят воздействию горизонтальных динамических нагрузок, создаваемых движением льда по речке, ударами судов при случайном их нашествие и др.



С временем их стали выполнять с железобетона в виде плоских и пространственных конструкций. Изгибающие напряжение в таких опорах воспринимаются арматурой.

Виды опор

Итак, все устои и промежуточные опоры мостов делят на четыре основные группы:

  • массивные опоры бетонной, бутобетонной и каменной кладки;
  • железобетонные;
  • комбинированные;
  • деревянные опоры.

Выбор той или иной конструкции зависит от

  • Высоты опор и конструкции пролетных строений
  • Назначение сооружения
  • Характера и уровня нагрузок
  • Гидрологических условий, то есть от характера протекания воды под мостом, степени изменения горизонтов воды, скорости течения, характера действия льда, условий судоходства и сплава
  • Геологических условий, к которым относятся характер наслоений в основе мощность отдельных слоев, их несущая способность и тому подобное.

По способу возведения опоры делятся на

  • Збоpные
  • Монолитные
  • З6оpнo-монолитные.

Массивные опоры могут быть сплошными и столбчатыми. Ширина сплошных опор может быть больше, равна или меньше ширины пролетного строения. Если ширина тела опоры меньше ширины пролетного строения, в верхней части опоры предусматривают двухконсольные ригели на которых размещают пролетное строение. Такие полуоблегченные опоры условно называют массивными облегченного типа.

К столбчатых относят массивные опоры, состоящие из отдельных бетонных столбов, заложенных в фундамент и соединенных сверху ригелем.

Железобетонные опоры разделяют на жесткие и гибкие.

  • При проектировании жесткие опоры рассчитывают на усилия, независимо от деформации;
  • в гибких опорах, наоборот, усилия вычисляют с учетом деформации. Типичным примером гибкой опоры есть свая. Опоры этой группы можно выполнять в виде свай или стенок, сплошных стен, столбов, соединенных насадками и ригелями.

Одностолбчастые опоры с двухконсольные ригелем, которые широко применяют для косых мостов, в зависимости от поперечных сечений и характера конструирования, могут быть разновидностью массивных опор облегченного типа и железобетонных.

В практике мостостроения также используют опоры смешанной конструкции. Если необходимо противодействовать ледовым или иным горизонтальным силовым действиям, их нижнюю часть делают массивной, а верхнюю — легкой железобетонной.

Характер передачи усилий от пролетных конструкций опорам зависит от типа опорных частей, которые могут иметь один или две степени свободы:

  • в первом случае опорные части обеспечивают только поворот пролетного строения при прогибе;
  • во втором — одновременно поворот и горизонтальное перемещение.

Иногда сами опоры конструируют так, что они дают возможность пролетных конструкциям получить горизонтальные перемещения в нужном направлении. Такие опоры соединяют с другими элементами моста внизу и вверху шарнирно и называют качающиеся. Их устраивают обычно в неразрезных мостах вместо жестких опор с подвижными опорными частями.

При проектировании промежуточных опор, расположенных в руслах рек, учитывают водный и ледовый режимы реки. При плохо обтекаемых контурах подводных частей опор возможные глубокие размывы русла и опасные для моста подмывы опор. Во время ледохода опоры противостоят ударам льда и значительном давлении ледяных полей.

На судоходных реках возможные нашествия на опоры судов. Поверхности опор подвергаются систематическому стирания льдом и наносами реки. Проектируя эстакады и путепроводы, следует учитывать безопасность движения и не загромождать опорами проезды.

Поделиться:
1 Комментарий

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.